Concept information
Preferred term
Grothendieck trace theorem
Definition(s)
-
In functional analysis, the Grothendieck trace theorem is an extension of Lidskii's theorem about the trace and the determinant of a certain class of nuclear operators on Banach spaces, the so-called 2/3-nuclear operators. The theorem was proven in 1955 by Alexander Grothendieck. Lidskii's theorem does not hold in general for Banach spaces.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Grothendieck_trace_theorem)
Broader concept(s)
In other languages
URI
http://data.loterre.fr/ark:/67375/PSR-XJ7W1ZPR-9
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}